Patterns for KUPE

_ x o
st2st Qe F28 HE0HS

Content

» (Grasp pattern

« GOF design pattern

Analysis & Design Overview

Phases
Elaboration

Disciplines
Business Modeling
Requirements

Inception

Construction

Transition

Apalysis & Design

tation
Test

ment

Configuration
& Change Mgmt

Project Management
Environment

Initial

Elab #1

Elab #2

l:unlsjl:nnst Const
#2 N

Tran || Tran
#1 w2

Iterations

4. Architecture of KUPE

Stage

Plan and i
FElaboration A)F Build A)F Deployment

"'IH

m Cycle 1 —)m Cycle 2 — e m Cycle n

-E Revise Sync. - —_— -
Plan Artifacts Analyze Design Construct Test

—# T —

i Activity —

Define Define Refine Define Define Define
Real Use Cases Reports & Ul System Archi. Interaction D. Design Class D DB Schema

GRASP pattern

GRASP Design Pattern

 General Responsibility Assignment Software
Patterns (GRASP)

« Fundamental and universal OO design principles in
the form of patterns
« It provides direction for
- assigning responsibilities to classes
« determining the classes that will be in a design

GRASP Patterns

* Low Coupling

« High Cohesion

» Expert

 Creator

 Controller

« Don’t talk to Stranger

POST Example for Low Coupling

—_
makePayment()

>

:POST

1: create()

>

2: addPayment(p)

P . Payment

:Sale

=> This design couples the POST class to
knowledge of the Payment class.

_—
makePayment()

>

1: addPayment(p)

:POST

1.1: create() l

:Sale

P . Payment

POST Example for Expert
« Conceptual Model

Sale
date
Time
Contain
1.~ Product
Sales Described Specification
: * escribed-
Lineltem by description
Quantity price
UPC

« How to calculate the grand total of the sale

>
T := total()
:Sale ale
date
Time
New % O | total()

4. Architecture of KUPE

Stage

- Plan and

Elaboration

Lol

—)- Deployment

Cycle 1

2117 Revise Sync.
Plan Artifacts Analyze Design Construct Test
e

-~ Activity

Define Define
Real Use Cases Reports & Ul

Define Define
i Interaction D. Design Class D

Define
DB Schema

. Design pattern

Iteration 2 Analyze

Phase 2030 Activities

F

i

Analyze

*——

a
- Define Essential

Use Cases

_m

Refine
Glossary

_""| Seq

Define
State Diagrams

b. ongoing
c. optional

Refine
se Case Diagrams

Define
Domain Model

Define System
uence Diagrams

Operation Contracts

Define

Identify Analyze
Mechanism

_.F

Refine System
Test Plan

|

Traceability Analysis

Analyze (2030)

Iteration 2 Design

F Design
Design Define Reports, Refine b
Real Use Cases ™| Ul, and Storyboards System Architecture

—

& B

Define Define Design @ Design Identify Design
Interaction Diagrams [~ Class Diagrams ™ Traceability Analysis Mechanism

Define
Database Schema

F

Architecture Design

« Identify Design Mechanism Overview

* Architecture Analysis THAH O Al 2015 &
S THBHMO YRS J|HoR &
@)

= FH|etCt.

« Identify Design Mechanism Steps
« Categorizes Clients of Analysis Mechanisms
« Document Architectural Mechanisms

[teration 2 Requirements

* 1. Support for variations in third-party external services.
For example, different tax calculators must be connectable to
the system, and each has a unique interface. Likewise with
different accounting systems and so forth. Each will offer a
different API and protocol for a core of common functions.

2. Complex pricing rules.
» 3. Pluggable business rules.

* 4. A design to refresh a GUI window when the sale total
changes.

Requirement

The NextGen POS system needs to support several kinds of external
third-party services, including tax calculators, credit authorization

services

Identify Analyze Mechanism

Need a adapter interface

Design THA|

Analyze Mechanism] .
Design Mechanism

Need adapter interface Adapter pattern

FProcess Sale

wactors

“Accounts

' Pay by Credit Scenario
M
‘NextGenPOS «actors _ =actors
. JCredit Aut horiz ation
_ Sy stem TaxCalculator Senvice
_Cashier
makeMNewSale() -
enteritemiitemID, quantitu
" descﬁgtimj, total
* [more items]
endSale() -
taxLineltems =
getTaxes(sale) -
< fotal with taxes
makeCreditPayment
reply = requesthpprovalirequest) -
ppstReceivablel receivahble)
postSalel sale)

Y

Figure 21.1 An 55D scenario that illustrate some external systems

«interfaces
ITaxCalculatorAdapter

getTaxes(Sale) : List of TaxLineltems

Adapters use interfaces and
polymorphism to add a level of
indirection to varying APIs in othe

components.
/V\k
o ™~
- ~
e 8
TaxMasterAdapter GoodAsGoldTaxPro
Adapter
getTaxes(Sale) - List of TaxLineltems
getTaxes(Sale) : List of TaxLineltems
ainterfaces sinterfaces
|AccountingAdapter ICreditAuthorizationService
. . Adapter
postReceivable(CreditPayment)

postSale(Sale)

requestApproval(CreditPayment, TerminallD, MerchantiD))

-
/
-

~
~
By

«interfaces

SAPAccountingAdapter

GreatNorthermnAccountingAdapter

linventoryAdapter

postReceivable(CraditPayment)
postSale(Sale)

postReceivable(CreditPayment)
postSale(Sale)

Adapter pattern

Reqgister

makeFayment() I

TR

UML notation to indicate something
implements a particular interface

lAccountingAdapter O

I SAPAccountingAdapter

posiSalel sale > I

O .

L.

SOAF over
HTTF
MM - asystems
T SAP
+'::.

-
" -
e s - '
- . >
LIS 2

the Adapter adapts to
interfaces in other

components

The adapter raises a new problem in the design:
= |n the prior Adapter pattern solution for external services with varying
Interfaces, who creates the adapters?

= And how to determine which class of adapter to create, such as TaxMaster-
Adapter or GoodAsGoldTaxProAdapterl

Factory pattern & singleton pattern

A

a UML sterectype can indicate that
visibility to this instance was
achieved via the Singleton pattemn

asingletons o

-Reqister .
~SenvicesFactory

aa = getAccountingAdapter() ﬁ

initializel)

P

e I
|

UML notation: this "1" can optionally be used to
indicate that only one instance will be created (a

zsingleton)
+ .l.u—:l h
L senvicesFactory
UML notation: in a o | instance : ServicesFactory Clesnnasasnnnas A singleton static
class box, an ks attnbute
underined attribute or | - accountingAdapter . lAccountingAdapter
method indicates a . inventory Adapter - llnventory Adapter
static (class level) taxCalculatorAdapter - ITaxCalculatorAdapter
member, rather than . _ singleton
an instance member o | getinstance() : ServicesFactory O sssoannlanssrsss atatic
o method
.+ | getAccountingAdapten() - lAccountingAdapter
.) getinventoryAdapter() : linventory Adapter
. getTaxCalculatorAdapter() : ITaxCalculatorAdapter

{ | N
/I static method
public static synchronized ServicesFactory getinstance()
{
if { instance == null)

instance = new ServicesFactory()
retum instance

}
}

Store

create I
M ‘Register
I

accountingAdapter =

«singletons

ServicesFactory

lAccountingAdapter

getAccountingAdapter() : [instance == null]

create() »| - SAPAccounting
Adapter
i
‘Register accountin ! dapter: IAccountingAdapterﬂ

makePayment() I

create(cashTendered) | - Payment
postSale(sale) I

SOAP over
HTTP

I

aSystems
SAP

Requirement

= Complex pricing rules.---Strategy ,Composite pattern

= Pluggable business rules--- Facade,Singleton pattern

= A design to refresh a GUI window when the sale total changes.
---Observer pattern

=Xt domain model

Strategy & composite
pattern

Domain
Sales Pricing /
Register Sale PricingStrategy ainterfaces
Factory |SalePricingStrategy
ServiceAccess Payments
: winterfaces
EI:-EW,EEEE CreditPayment | CreditAuthorization ‘
actory serviceAdapter |
Inventory POSRuleEngine | Taxes |
| =
winterfaces - ainterfaces
lInventoryAdapter ‘ ‘ POSRuleEnginer acade ITaxCalculatorAdapter

Facade pattern

Adapter &factory
&singleton patterr

